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A B S T R A C T

Intracranial volume (ICV) segmentation, also known as brain extraction or skull-stripping, is a critical pre-
processing step in analytical pipelines for studying neurodegenerative diseases in magnetic resonance imaging
(MRI). While the fluid-attenuated inversion recovery (FLAIR) MRI modality has emerged as an important
sequence for analyzing cerebrovascular and neurodegenerative disease, most existing automated ICV segmenta-
tion methods have been developed for T1-weighted or multi-modal inputs. Additionally, many methods have been
designed using single centre data of healthy subjects and encounter difficulties using images with varying
acquisition parameters and neurodegenerative pathology. In this work, we develop and evaluate 2 traditional and
8 deep learning algorithms for ICV segmentation in FLAIR MRI. Training and testing were completed on 175 vol
(8317 images) from 2 dementia and 1 vascular disease cohort. A human phantom FLAIR MRI dataset from a
repeatedly scanned, healthy individual was also utilized for reliability analysis. Images were acquired from 47
imaging centres with varying scanners and parameters. To measure and compare performance, we present a novel
framework for evaluating the effectiveness of computer generated segmentations on multicentre datasets. The
evaluation framework includes assessments of algorithm accuracy, generalization capabilities, robustness to pa-
thology and spatial location, and volumetric measurement reliability – all important dimensions for establishing
proof of effectiveness (a prerequisite to clinical translation). The top performing method was a multiple resolution
U-Net (MultiResUNet), which achieved a mean Dice similarity coefficient greater than 98% and was robust across
pathology levels and spatial locations. Our results confirm a FLAIR-based ICV analytical pipeline can alone be
utilized for large-scale neurodegenerative disease research. The presented evaluation framework can be deployed
by other researchers to assess the viability of tools proposed for automated analysis of diverse, clinical MRI
datasets.
1. Introduction

In 2010, there were 36.5 million people living with dementia and 7.7
million new cases occurring each year (Sosa-Ortiz et al., 2012). In Canada
alone, it is estimated that over 1 million people will be living with de-
mentia by 2031 with the annual cost of care exceeding $16 billion
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trajectory with the aim of improving quality of life and cost to healthcare
systems. Neuroimaging biomarkers are potentially powerful candidates
for disease detection, quantification, and monitoring.

Magnetic resonance imaging (MRI) is ideal for neuroimaging
biomarker measurement due to its ability to image the soft tissue in the
brain with high detail. MRI visualizes structural abnormalities like ce-
rebral atrophy and ischemic pathology such as white matter lesions
(WML) (Brant-Zawadzki et al., 1996), which have been associated with
dementia (Oppedal et al., 2015). With MRI, patients can be serially
monitored to identify increasing WML volumes and accelerated brain
aging patterns such as gray matter (GM) loss, white matter (WM) loss,
and expansion of cerebrospinal fluid (CSF) spaces in the ventricular
system, cortical sulci, and gyri which are higher in subjects with AD (Ntiri
et al., 2020), (Scahill et al., 2003), (Silbert et al., 2003), (Gunter et al.,
2003), (Sigurdsson et al., 2012), (Aribisala et al., 2013), (Leung et al.,
2013), (Rocca et al., 2017). Neuroimaging biomarkers can therefore be
leveraged to inform diagnostic criteria, to monitor risk, and to determine
optimal intervention times (Struyfs et al., 2020). Unfortunately, per-
forming manual biomarker analysis is expensive, laborious, and prone to
inter-observer variability (Squitieri et al., 2009), (Nordenskj€old et al.,
2013), (Hansen et al., 2015). Automated image analysis systems are a
viable alternative that can compute quantitative biomarkers for subjects
accurately and efficiently.

T1-weighted (T1) imaging is the most extensively used MRI modality
for automated structural brain analysis. This is because T1 images pro-
vide strong contrast between the prominent healthy tissue classes of GM,
WM, and CSF (Rehman et al., 2020a). Recently, fluid-attenuated inver-
sion recovery (FLAIR) MRI has emerged as an important modality for
neurodegenerative disease imaging and patient monitoring (Wardlaw
et al., 2015), (García-Lorenzo et al., 2013), (Khademi et al., 2011),
(Heinen et al., 2019), (Narayana et al., 2020). FLAIR MRI is preferred for
WML analysis since the usually high T2 signal from CSF is suppressed
(Soltanian-Zadeh and Peck, 2001), emphasizing the high white matter
disease signal. This is due to the increased water content associated with
ischemia and demyelination which can be more robustly seen with FLAIR
than with T1 or T2-weighted (T2) imaging (Soltanian-Zadeh and Peck,
2001).

Intracranial volume (ICV) segmentation, also known as brain
extraction or skull stripping, is the process of removing non-cerebral
tissues like the skull, skin, and orbital cavities from brain MRI. ICV seg-
mentation is a critical preprocessing step for biomarker extraction algo-
rithms (i.e., tissue and lesion segmentation) and downstream analysis
(i.e., image registration) where non-brain tissues are known to be a
source of system interference (Khademi et al., 2020), (Manj�on et al.,
2014), (Kalavathi and Prasath, 2016), (Rehman et al., 2020b). Impor-
tantly, ICV is also used to normalize volumetric biomarkers of the brain
(Rehman et al., 2020b), (Malone et al., 2015), (Schwarz et al., 2016)
which can differentiate between normal and cognitively impaired sub-
jects (Ntiri et al., 2020), (Leung et al., 2013), (Schwarz et al., 2016) by
compensating for pre-morbid brain size, gender differences, and
inter-subject head size variation (Nordenskj€old et al., 2013), (Hansen
et al., 2015), (Rehman et al., 2020b), (Malone et al., 2015), (Schwarz
et al., 2016).

There are a variety of ICV segmentation methods to analyze MRI
(Kalavathi and Prasath, 2016), (Iglesias et al., 2011), (S�egonne et al.,
2004), (Smith, 2002), (Eskildsen et al., 2012), (Datta and Narayana,
2011). Most of these methods have been designed for T1 MRI and cannot
be directly translated to FLAIR sequences (DiGregorio, 2018). There are
few works for FLAIR ICV segmentation in the literature. One such
approach is semi-automated (Khademi et al., 2011), which remains
laborious and subjective. Other approaches require multi-modal inputs
(De Boer et al., 2007), (Hah et al., 2014), which increases acquisition
costs and registration errors. In (Zhong et al., 2012), a FLAIR ICV seg-
mentation method was designed based on edge detection, local moments
of inertia, and morphology. Although promising, the authors acknowl-
edge that this method was developed using single centre data (same
2

scanner and parameters) and may not generalize to new data. Variabil-
ities in scanner hardware and software across imaging centres creates
inter-scan variability in tissue class intensities (Reiche et al., 2019),
which causes challenges for automated approaches. In (Khademi et al.,
2020), the authors tried to overcome this multicentre effect with a ma-
chine learning (ML) approach that utilized an intensity standardization
preprocessing framework. This method improved generalization across
different scanner vendors but had challenges in images with pathology.
While such methods are promising, convolutional neural networks
(CNN) can adapt to highly variable biomedical imaging data, are
achieving state-of-the-art performance for a variety of MRI segmentation
applications (Akkus et al., 2017), (Ali et al., 2019), (Bernal et al., 2019),
do not require handcrafted feature engineering, and are easily translat-
able to FLAIR MRI. Therefore, the utility of CNN-based methods for ICV
segmentation in multicentre FLAIRMRI is promising and requires further
examination.

To this end, we implemented and evaluated 10 ICV segmentation
algorithms using multicentre, multi-disease FLAIR MRI databases ac-
quired with varying scanners and protocols. Both traditional approaches,
being comprised of an unsupervised thresholding technique and a
random forest classifier (Khademi et al., 2020), and deep learning ap-
proaches that utilize prominent CNN architectures for medical image
segmentation were developed. To validate and compare algorithm per-
formance, an evaluation framework that can be used to establish proof of
effectiveness for automated analysis algorithms in large, multicentre
datasets with diverse neurodegenerative pathology is proposed. Several
dimensions related to clinical implementation including accuracy,
generalizability, robustness to pathology and spatial location, and vol-
ume measurement reliability are introduced. The proposed tools and
evaluation framework were realized using 175 vol (8317 image slices)
from 35 international imaging centres and an additional 62 vol from a
human phantom dataset (Duchesne et al., 2019a).

2. Materials and methods

2.1. Data

Experimental data for this work comes from 4 multicentre FLAIR MRI
datasets. The first dataset is from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), one of the largest open repositories for the study of AD
and dementia disease (Jack et al., 2008). ADNI includes 900 subjects
with longitudinal follow up resulting in 4126 imaging volumes. The
second data repository is from the Canadian Atherosclerosis Imaging
Network (CAIN) (Tardif et al., 2013), a pan-Canadian clinical study on
vascular disease. There are 400 subjects in CAINwith follow up for a total
of 871 volumes. The third dataset is from the Canadian Consortium on
Neurodegeneration in Aging (CCNA), a pan-Canadian clinical study to
analyze different types of dementia (Chertkow et al., 2019), (Mohaddes
et al., 2018). CCNA has currently recruited 200 patients with additional
time points for a total of 561 imaging volumes. The volumes from these
three clinical datasets are accompanied by Montreal Cognitive Assess-
ment (MoCA) scores (Nasreddine et al., 2005). MoCA is a cognitive
screening assessment for neurodegenerative illnesses such as AD and
vascular cognitive impairment. The last dataset, called the Single Indi-
vidual volunteer for Multiple Observations across Networks (SIMON), is
a longitudinal series acquired from one healthy male, scanned over many
sessions between the ages of 29 and 46 at multiple centres and with
various scanner models (Duchesne et al., 2019a). Each dataset contains
FLAIR MRI that were acquired in the axial plane at 3T from General
Electric (GE), Philips, and Siemens scanners.

For training and testing, 175 FLAIR MRI volumes (8317 image slices)
were sampled from CAIN, ADNI, and CCNA. In total, 125 were sampled
from CAIN, 25 from ADNI, and 25 from CCNA while stratifying across
scanner vendors and across centres or disease if possible. Patient infor-
mation and FLAIR imaging parameters for the sampled ADNI, CAIN, and
CCNA volumes are listed in Table 1 to demonstrate the diversity of the



Table 1
Summary of the multicentre FLAIR MRI data used for algorithm evaluation. All volumes were acquired at 3T. Values for repetition time (TR), echo time (TE), inversion
time (TI), and pixel spacing are represented by the range found in the data. CAIN, ADNI, and CCNA have ground truth delineations for ICV. SIMON is the same subject
imaged multiple times.

Patient Information

Database Disease No. Volumes No. Images No. Patients No. Centres Age ± SD (yrs.) F (%)

ADNI Dementia 25 917 25 21 73.11 � 5.30 44
CAIN Vascular 125 6205 125 9 73.52 � 8.40 36
CCNA Dementia 25 1195 25 5 73.12 � 8.37 56
SIMON Normal 62 2976 1 12 – 0

Acquisition Parameters

Database Scanner Vendors Mag Field (T) TR (ms) TE (ms) TI (ms) Pixel Spacing (mm) Slice Thickness (mm)

ADNI GE, Philips, Siemens 3 9000–11000 90–154 2250–2500 0.8594 5
CAIN GE, Philips, Siemens 3 9000–11000 117–150 2200–2800 0.4295–1 3
CCNA GE, Philips, Siemens 3 9000–9840 125–144 2250–2500 0.9375 3
SIMON GE, Philips, Siemens 3 9000 125 2500 0.9375 3
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data. All volumes used for training and testing were accompanied by
manual ground truth annotations of the ICV region which were generated
by a biomedical student trained by a radiologist using ITK-SNAP1

(Yushkevich et al., 2006) and Pathcore Sedeen2. ADNI volumes were
sampled from 21 different centres and at least 3 vol from each ADNI
disease classification were included. Specifically, 5 normal, 4 early mild
cognitive impairment (EMCI), 7 late mild cognitive impairment (LMCI),
3 subjective memory concern (SMC), and 6 AD volumes were selected.
CAIN and CCNA volumes were sampled from 9 to 5 imaging centres
respectively, with approximately equal representation of GE, Siemens,
and Philips scans.

The SIMON human phantom dataset was used to examine the reli-
ability of ICVmeasurements. Our subset of 62 SIMON scans was acquired
from 12 centres using the Canadian Dementia Imaging Protocol (CDIP)
(Duchesne et al., 2019b) over all scanner vendors. See Table 1 for the
CDIP imaging parameters.
2.2. Pre-processing

Intensity standardization was performed to remove variability caused
by the multicentre effect (Zhong et al., 2012), (Reiche et al., 2019). All
volumes were preprocessed using an inhouse pipeline (Reiche et al.,
2019), which incorporated noise removal, bias field correction, and in-
tensity normalization. The volumes were denoised using 3 � 3 median
filtering followed by homomorphic filtering for bias field correction.
Intensity standardization was then achieved through histogram based
scaling and peak alignment with the use of an atlas. Image and atlas
histograms were first normalized so bin frequencies were given as per-
centiles. This helped to ensure that smaller images (i.e., 256 � 256) with
significantly less pixels had similar magnitudes to larger images (i.e., 560
� 560). In FLAIR histograms, the GM andWM tissues manifest as a single
mode in the intensity histogram and the GM/WM peak was robustly
detected by searching for the maximum bin count. The detected peaks
then underwent alignment by applying a global, linear re-scaling of the
entire histogram with a factor derived from the difference between the
mode of the atlas and the target image. As shown in (Reiche et al., 2019),
the intensity intervals of tissues in 350K FLAIR MRI are more consistent
across multicentre data using this approach.
2.3. ICV segmentation algorithms

Two categories of algorithms were evaluated. The first category of
algorithms was based on traditional approaches, including image
1 www.itksnap.org.
2 https://pathcore.com/sedeen/.
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processing and ML. The second category was based on deep learning
methods that use CNNs. CNNs model multi-resolution relationships be-
tween pixels and use non-linear boundaries for excellent segmentation
performance (Hwang et al., 2019), (Guerrero et al., 2018), (Thakur et al.,
2020). CNN architectures were selected based on their proven feasibility
for medical image segmentation. Apart from Kleesiek’s method (section
2.3.3), all the selected CNN architectures utilize 2D convolutions rather
than 3D. A recent study comparing 2D and 3D architectures for brain
extraction found comparable results between the two configurations
(Thakur et al., 2020).

2.3.1. Thresholding
Many traditional algorithms have used thresholding and mathemat-

ical morphology to isolate cerebral tissue (Rehman et al., 2020b). In line
with these approaches, an intensity thresholding-based approach was
investigated for multicentre FLAIR MRI. The intensity standardization
applied during preprocessing removed intensity variability in the brain
tissue regions across scanning devices and allowed predefined thresholds
to isolate the intracranial cavity. Small structures connecting cerebral
and non-cerebral regions, and small clusters of isolated pixels were
removed through morphological erosion and connected component
analysis. Dilation and hole filling were applied during post-processing to
refine the initial segmentations.

2.3.2. Random forest
The method presented in (Khademi et al., 2020) is an ICV segmen-

tation algorithm based on intensity standardization (Reiche et al., 2019),
hand-crafted feature design, and a random forest classifier (RFC) for
multicentre FLAIR MRI. An intuitive and interpretive feature set was
designed, which included variants of local intensities, gradient magni-
tudes, and Gaussian derivatives. A novel sampling strategy was employed
to include training samples from regions that are difficult to classify.
Specifically, 75% of training pixels laid within 10 mm of the ICV border
where there is feature overlap between brain and surrounding dura.
Since the intensity ranges were standardized, local features were
consistent across patients. An RFC was selected over other ML classifiers
because of their ability to avoid overfitting (Khademi et al., 2020). In
total, 200 individual learners were used, and the number of features
analyzed at each node was set to 2 to reduce correlation between trees.
RFC outputs were refined using the morphological operations described
in section 2.3.1.

2.3.3. Kleesiek
The work by Kleesiek in (Kleesiek et al., 2016) is one of the first CNNs

for brain extraction. This 3D architecture contains 8 fully convolutional
layers consisting of 5 � 5 kernels. The outputs of certain layers are
down-sampled via max-pooling to increase the receptive field and

http://www.itksnap.org
https://pathcore.com/sedeen/


Fig. 1. Encoding/decoding units for U-Net, Res U-Net, and Dense U-Net.
Encoding units reside between max pooling layers and decoding units reside
between transposed convolutional layers.
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introduce translation invariance. Learning is achieved by minimizing the
Kullback-Leibler divergence loss function (Kleesiek et al., 2016). The
authors explored 3D architectures because of their ability to automati-
cally learn representative features of the brain while accounting for its
volumetric nature (continuity between individual MRI slices). This al-
gorithm was designed to operate on any combination of MRI modalities
and was evaluated using T1 and multi-modal inputs. In this work, the
containerized GitHub version3of this method was used with default pa-
rameters (i.e., optimizer, learning rate, number of training iterations).

2.3.4. FCN8
CNNs for classification can be reconfigured for semantic segmenta-

tion by replacing the final, fully connected layers with convolutions. This
yields fully convolutional networks (FCN) and was first introduced in
(Long et al., 2015). Since then, FCNs have been used for medical image
segmentation tasks such as liver delineation in computed tomography
(Ben-Cohen et al., 2016). Like the liver, the brain is a gross anatomical
structure and may be suitable for segmentation by FCNs. In this work, the
architecture in (Long et al., 2015) that uses a VGG 16-layer (VGG16)
classifier base and upsamples stride 8 predictions back to pixels was used.
This architecture, known as FCN8, uses skip connections to combine the
final prediction layer with the 8x upsampled lower layer. By combining
lower, fine layers with higher, course layers the network can generate
locally detailed segmentations that consider global structure. We modi-
fied the work in (Long et al., 2015) by removing all VGG16 dropout
layers since no overfitting occurred without them.

2.3.5. U-Net
Of the 8 CNN-based methods that were investigated, 4 represented

the U-Net (Ronneberger et al., 2015) and some if its variations. U-Net was
proposed in 2015 and has been a mainstay in medical image segmenta-
tion research because of its ability to adapt to variable biomedical data
(Hwang et al., 2019), (Thakur et al., 2020), (Ronneberger et al., 2015).
This architecture is composed of 2 paths: an encoder and a decoder. The
encoding path contains units of convolutional and max pooling layers
that perform feature extraction. The decoding path contains units of
convolutional and transposed convolutional layers that are used in
combination with skip connections to recapture the spatial context of
images (Long et al., 2015), (Ronneberger et al., 2015). U-Net contains 5
levels where the filter depth is doubled during each encoding “descen-
sion” (via max pooling) and halved during each decoding “ascension”
(via transposed convolution). In this work, the U-Net and U-Net variants
(sections 2.3.6–2.3.8) were implemented with batch normalization
layers succeeding convolutional layers. Batch normalization automati-
cally standardizes layer inputs and stores relevant statistics so that they
may be updated and applied to future inputs (Ioffe and Szegedy, 2015).
This accelerates convergence and improves generalization via a modest
regularization effect. In the original U-Net implementation, the initial
filter depth was 64, but in this work, it was set to 32 for all U-Net variants.
This greatly reduced the number of parameters without diminishing
performance. The structure of our U-Net encoding and decoding units are
shown in Fig. 1.

2.3.6. SC U-Net
The first U-Net variant we includedwas the skip connection U-Net (SC

U-Net) proposed in (Wu et al., 2019). Skip connections are additional
paths between the shallow and deep layers of a CNN architecture. SC
U-Net includes all skip connections from the original U-Net while adding
4 additional connections between the up-convolution and
down-convolution layers. Specifically, the authors added the outputs
from each max-pooling layer in the encoder to the inputs for each
transposed convolution layer in the decoder. These additional skip con-
nections were included to ease training by improving information and
3 https://github.com/GUR9000/Deep_MRI_brain_extraction.
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back-propagation flow (Wu et al., 2019), (Drozdzal et al., 2016). This has
been shown to diminish the vanishing gradient problem that commonly
occurs when training deep networks (Drozdzal et al., 2016). We deviated
from the SC U-Net implementation shown in (Wu et al., 2019) by
including batch normalization after all convolutional layers.

2.3.7. Res U-Net
Res U-Net utilizes residual connections; a type of skip connection that

has demonstrated strong performance on image recognition tasks (He
et al., 2016a). Using identity mappings and after addition activations,
residual connections enable direct information propagation between
network layers (He et al., 2016a). This eases optimization in deep ar-
chitectures without drastically increasing computational complexity.
Networks with residual connections have been used to accurately
segment lesions (Guerrero et al., 2018), healthy brain tissues (Chen et al.,
2018), and ICV (Kola�rík et al., 2019). Our Res U-Net was implemented by
replacing the encoder and decoder units in our U-Net with units con-
taining residual connections. See Fig. 1 for the Res U-Net units used in
this work, which are based on the “batch normalization after addition”
setup presented in (He et al., 2016b). The 1 � 1 convolutional layer is
included to change the input filter depth and make addition possible.

2.3.8. Dense U-Net
Dense U-Net utilizes dense connections; a design feature that connects

each layer to every other layer in a feed-forward manner. Granting all
parts of the network direct access to input and loss function gradients
improves information flow and eases training (Huang et al., 2017). This
boosts performance by avoiding the learning of redundant features and
providing regularization to reduce overfitting (Li et al., 2018). Dense
U-Net models have been used to segment gross anatomical structures
such as the liver in computed tomography (Li et al., 2018) and ICV inMRI
(Kola�rík et al., 2019). Following these approaches, we replaced the
encoding and decoding units from our U-Net with units containing dense
connections. The configuration of our Dense U-Net units can be seen in
Fig. 1. Confining the dense connections to encoding and decoding units
in this manner avoided feature map explosion and the loss of too much
low-level information (J�egou et al., 2017).

2.3.9. CompNet
The complementary segmentation network (CompNet) was proposed

in (Dey and Hong, 2018) as a robust solution to ICV segmentation in T1
MRI with prominent pathology. This architecture has a segmentation
branch for learning features related to the ICV region and a comple-
mentary branch for learning features of the non-cerebral region. Cerebral
pathology such as WML, stroke, and tumours are known to disrupt ICV
segmentation. Since non-cerebral regions are less afflicted by pathology
(and are therefore more consistent), learning features from the
non-cerebral regions can be used to improve the quality of ICV seg-
mentations. An additional branch reconstructs the image using the re-
sults from segmentation and complementary branches which are both

https://github.com/GUR9000/Deep_MRI_brain_extraction
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U-Net architectures. This network learns by maximizing the negative
Dice coefficient between the predicted brain mask (BM) and its ground
truth (GT), minimizing the Dice coefficient between the predicted com-
plementary mask (CM) of the non-cerebral tissues and GT, and mini-
mizing the mean squared error (MSE) between the reconstructed image
(R) and the input image (I) as in:

CompNet Loss¼ �DiceðBM;GTÞþDiceðCM;GTÞ þMSEðR; IÞ

where the loss corresponding to the reconstruction branch guides
learning as a feedback mechanism which expects reasonable outputs
from the other 2 branches. In this work, we used an optimal variant of the
CompNet which includes dense connections (Dey and Hong, 2018). Since
no overfitting was observed without them, we altered the original
implementation by removing all dropout and regularization layers.

2.3.10. MultiResUNet
The multiple resolution U-Net (MultiResUNet) was proposed in

(Ibtehaz and Rahman, 2020) as an architecture better suited for
analyzing images at multiple scales. In U-Net, the encoding/decoding
units contain successive 3� 3 convolutional layers, which are equivalent
to a single 5 � 5 convolution (Szegedy et al., 2016). MultiResUNet ex-
pands on this concept by replacing all encoding/decoding units with
“MultiRes” blocks; units that concatenate the outputs of 3 successive 3 �
3 convolutional layers and bind them with a residual connection. This
efficiently captures features at the 3 � 3, 5 � 5, and 7 � 7 scales. Mul-
tiResUNet also replaces all skip connections with “Res” paths, sequences
of residual convolutional layers. The authors theorized that the
non-linear operations within these modified skip connections would
reduce the semantic gap between shallow encoder and deep decoder
features. We altered the “MultiRes” block from (Ibtehaz and Rahman,
2020) to follow the “batch normalization after addition” layer structure
(He et al., 2016b). Fig. 2 shows the “MultiRes” units used in this work.
2.4. Post-processing

The traditional ICV segmentation methods required morphological
post-processing to refine ICV masks after thresholding and classification.
Such refinement was not considered to be a post-processing technique as
it is a necessary component in each of the traditional algorithms. In
contrast to these approaches, the ICV masks generated by the CNN-based
methods did not require post-processing to generate high quality seg-
mentations. Thus, only connected component analysis and automated,
morphological hole filling were applied to obtain the best possible ICV
masks.
2.5. Evaluation metrics

Evaluation metrics that are commonly used to quantify segmentation
performance in medical imaging were used. Firstly, the Dice similarity
coefficient (DSC) (Wu et al., 2019) was used which measures the spatial
Fig. 2. Encoding/decoding unit for MultiResUNet. Encoding units reside be-
tween max pooling layers while decoding units reside between transposed
convolutional layers.
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overlap between the automatically predicted brain mask (BM) and cor-
responding manual ground truth (GT):

DSC¼ 2jGT \ BMj
jGT j þ jBMj

where the DSC ranges between 0 and 1, and a value of 1 implies perfect
overlap.

Hausdorff distance (HD) is a metric that compliments DSC by ac-
counting for local differences between the predicted brain mask and
ground truth. HD measures the distance between two subsets of points in
a metric space and is mathematically defined as:

HD95 ¼maxxεGTminyεBMx� y

where smaller distances imply a greater degree of similarity. To improve
robustness and reduce sensitivity to noisy segmentations, the 95th
percentile HD was used.

To investigate the false positive rate, the extra fraction (EF) was
computed:

EF¼ FP
TPþ FN

where TP are the true positives, FP are the false positives, and FN is the
false negatives of the automated ICV estimation as compared to the
ground truth. If there are no false positives detected, EF will be equal to 0.
Over-segmentation of cerebral tissues (i.e., inclusion of skull tissue,
ocular orbits) would result in higher EF rates.

Average volume difference (AVD) quantifies the difference between
the ground truth ICV (VGT) and predicted ICV (VBM). AVD is mathemat-
ically defined as:

AVD¼ jðVGT � VBMÞj
VGT

where brain volumes are computed in millilitres and a smaller AVD im-
plies a better segmentation. Additionally, Bland-Altman (B-A) plots were
used to measure the agreement between the manual ground truth ICV
volumes and the automatically predicted ICV volumes. By plotting dif-
ference against mean, B-A plots allowed assessment of the measurement
bias associated with each method.
2.6. Experimental design

In this work, we considered several performance dimensions that
represent a novel framework for evaluating the effectiveness of auto-
mated tools for clinical application. For a tool to be widely adopted, it
must be accurate, generalize to new datasets and scanners, robust to
challenges in data (such as pathology or spatial location), and produce
reliable volumemeasurements. As a result, to analyze the performance of
each algorithm for ICV segmentation, four aspects of performance were
assessed: (1) accuracy, (2) generalization capabilities, (3) robustness to
pathology and spatial location, and (4) volumetric measurement reli-
ability. The experiments corresponding to each of these tests are elabo-
rated upon below, along with the data splits that were used to train
models. A breakdown of these data splits and the overall data preparation
process can be seen in Fig. 3.

2.6.1. Data splits
Data split #1 was a 50/20/30 training/validation/testing ratio of all

175 FLAIR MRI volumes resulting in 85 vol for training, 37 vol for hold-
out validation, and 53 vol for testing. Stratified splitting was used so the
proportions of CAIN, ADNI, and CCNA volumes in the training, valida-
tion, and test sets mirrored that of the overall population. The proportion
of each scanner type (GE, Siemens, and Philips) was approximately
stratified as well. Data split #1 was designed with two purposes in mind.



Fig. 3. Summary of the data split strategies and data preparation process prior to algorithm training and testing. All algorithms were trained, validated, and tested
using the same subsets of data.
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First, in an ideal scenario, training data would be available for each of the
datasets being analyzed. Segmentation models exhibit improved perfor-
mance when tested on data from the same distribution as the training
data. Data split #1 was therefore used to establish ideal performance
benchmarks. Second, data split #1 ensured that there was broad repre-
sentation of the cerebral tissues and pathology in the training data. These
datasets contain different diseases (dementia, vascular disease), diverse
pathology, and acquisition parameters which were used to improve
generalization capabilities of the approaches.

Data split #2 was used to mimic real-world models. In usual devel-
opment scenarios, designers have access to a single dataset which is used
to generate ground truths and train models. Upon clinical implementa-
tion, the algorithms would then be expected to generalize to new, unseen
data. To test this scenario, CAIN data was exclusively used for training
and validation since it is comprised of the most ground truths. The
remaining 25 ADNI and 25 CCNA volumes, in addition to 25 held-out
CAIN volumes, were used for testing. This resulted in 85 vol being
used for training, 15 vol being used for hold-out validation, and 75 vol
being used for testing. Since CAIN is vascular, ADNI is AD-type dementia,
and CCNA is all types of dementia, this data split also evaluated algo-
rithm generalization to differing diseases. This is important as morpho-
logical characteristics of the brain can be different depending on the type
of risk factors and pathology present. By using CAIN for training, we were
also able to match the training set size from data split #1, thus allowing
fair analysis and comparison.

2.6.2. Accuracy
As a first step, the average accuracy of all methods was investigated.

Since biomarkers can be used to guide clinical decisions and treatment
options, accuracy is of utmost importance. Assessments of overall accu-
racy were conducted using models trained and tested from data splits #1
and #2. Results generated from data split #1 models were emphasized
since it represents the ideal setup of increased data diversity. Our tests for
accuracy included means and standard deviations of all evaluation
metrics, as well as B-A plots between the true and predicted ICV
measurements.

2.6.3. Generalization
To maximize translation opportunities, ICV segmentation algorithms

should not experience drastic drop-offs in performance when the inputs
come from different centres or scanning devices. To assess generalization
Fig. 4. Sample images showing variation of scans from
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across vendors, we observed evaluation metrics generated from data split
#1 as a function of scanner vendor. To assess generalization to unseen
databases, we observed evaluation metrics generated from data split #2
as a function of test database. See Fig. 4 for the variation exhibited by
images from different databases and scanner vendors.

2.6.4. Robustness to pathology and spatial location
In this phase, the methods were evaluated in terms of their ability to

segment ICV for varying levels of disease and spatial location. Data split
#1 was used for all these experiments. Only the traditional (Thresh-
olding, RFC) and the top CNN methods were compared.

Tools should have equal performance (robustness) irrespective of the
amount of pathology found in the brain. To test this, evaluation metrics
were measured as a function of pathological load. Neurodegenerative
diseases are characterized by increased prevalence of WMLs and atrophy
(expansion of CSF spaces) (Oppedal et al., 2015), (Ntiri et al., 2020),
(Scahill et al., 2003), (Silbert et al., 2003), (Gunter et al., 2003),
(Sigurdsson et al., 2012), (Aribisala et al., 2013), (Leung et al., 2013),
(Rocca et al., 2017). For an estimate of WML and CSF loads, the stan-
dardized volumes were masked using the ICV ground truths and
thresholded using the intensity ranges shown in Fig. 5. Standardization
enabled thresholds to isolate WML and CSF regions and obtain an esti-
mate of pathological load in millilitres. WML and CSF loads were clas-
sified as low, medium, or high using the guidelines described in (de Sitter
et al., 2017) and (Squitieri et al., 2009) respectively. Table 2 summarizes
the volume ranges that were used to categorize pathological load and the
number of test subjects in each category. Fig. 6 shows sample images for
low, medium, and high pathological loads classified according to this
scheme. Algorithm performance as a function of MoCA score categori-
zation was also observed. A MoCA score of 26 or greater defined cogni-
tively normal patients, while a MoCA score less than 26 defined impaired
patients (Nasreddine et al., 2005).

Algorithm robustness across spatial locations was also evaluated as
certain anatomical regions are known to cause segmentation challenges.
For example, poorer segmentations typically occur in extreme superior
and inferior slices where it is difficult to distinguish between brain and
surrounding dura. To quantify segmentation performance as a function of
spatial location, the DSC was measured for five segments of each test
volume, where each segment comprised 20% of the total (contiguous)
slices from the ICV mask. This resulted in a single bottom region, three
middle regions, and a single top region. To analyze these regions further,
different datasets and different scanner vendors.



Fig. 5. Volume histograms before and after intensity standardization. The intensity ranges used to estimate different tissue volumes via thresholding are shown by the
colours on the standardized histograms. Pixels representing the brain (GM/WM), CSF, and WML are shown as turquoise, green, and blue, respectively.

Table 2
Summary of the estimated volumes used to categorize WML and CSF loads as
low, medium, or high. Pathological loads were estimated for the 53 test subjects
in data split #1.

Pathology Categorization Volume No. Test Subjects

WML Low <5 mL 18
Medium 5–15 mL 19
High >15 mL 16

Atrophy (CSF) Low <205 mL 30
Medium 205–275 mL 14
High >275 mL 9

Fig. 7. Slices from SIMON volumes acquired on GE, Philips, and Siemens
scanners. Despite all being acquired with the CDIP protocol (Yushkevich et al.,
2006), differences in scanning hardware manifest themselves in the
output volumes.
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the spatial distribution of FPs and FNs were visualized using error maps.
Error maps were generated by registering the volumes, ground truths,
and predicted ICV masks to a common spatial reference (Winkler,
Kochunov, Glahn) using ANTs (Avants et al., 2011). Within the ANTs
toolkit, the diffeomorphic image registration tool, called symmetric
normalization (SyN), was used due to its proven efficacy for handling
large deformation problems (Avants et al., 2008). Registration converted
the volumes to a size of 256 � 256 � 55 with an isotropic voxel reso-
lution of 1.0 � 1.0 � 1.0 mm3. The error was then be computed as the
absolute difference between the ground truths and ICV estimations for all
slices. Error map generation was completed by averaging all the indi-
vidual error maps (per slice) for each algorithm.

2.6.5. Volumetric reliability and reproducibility
The traditional (Thresholding, RFC) and top performing CNN

methods from previous analyses were used to generate segmentations on
the SIMON dataset. Data split #1 models were used. See Fig. 7 for
example SIMON scans from each vendor, which demonstrates how
Fig. 6. Sample images showing variation of scans wi
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differences in scanning hardware can cause the same brain to appear
different despite a uniform protocol. A reliable tool would be able to
output reproducible ICV measurements for the same subject despite this
variation. Descriptive statistics, including the coefficient of variation
(CoV), were used to compare each algorithm’s ICV measurements be-
tween scanner vendors (see section 2.7 for more details).
2.7. Statistical analysis

To analyze trends in the methods, statistical analysis was performed
alongside the evaluation tests. It would be of interest to the clinical
community to demonstrate which (if any) of the tools provide similar
performance across the proposed dimensions of generalization (scanner
types, datasets), pathology (CSF load, WML load), and spatial location
(bottom, middle and top slices), and whether they provide reliable ICV
measurements in the SIMON human phantom data.
th different CSF loads and different WML loads.
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To compare the same method over different groups (i.e., scanner
vendor, dataset, etc.) a single evaluation metric was chosen to simplify
analysis. DSC was the main evaluation metric selected for statistical
analysis as it is the strongest indicator of overall performance in addition
to being highly interpretative. For each of the test criteria, the mean DSC
was statistically compared across groups using analysis of variance
(ANOVA) tests. These tests demonstrate whether an algorithm has
similar performance outcome variables (DSC) over the different predictor
variables (dataset, scanner, pathology load, spatial location). ANOVA
was selected based on descriptive statistics, and goodness-of-fit-tests for
normal distributions (i.e., Kolmogorov-Smirnov, Cramer-von Mises,
Anderson-Darling) on DSC values across all ICV segmentation methods.
The raw DSC values were found to be non-normal and negatively skewed.
As a result, the DSC values underwent reflection and a double logarithmic
transformation to improve linearity and homogeneity of variance prior to
analysis (Dobson and Barnett, 2018). For instances where the results of
ANOVA tests were significant, Tukey-Kramer post-hoc adjustment for
multiple comparisons were used to determine the sources of difference.
Adjusted DSC was used as the primary outcome variable but results for
adjusted HD and EF as outcome variables were also generated and can be
found in the Appendix.

To assess the reliability of ICV analysis over repeated measurements,
the estimated ICV from each method/scanner combination was
computed from the human phantom dataset (SIMON) and analyzed. The
mean and standard deviation of ICV measurements for each method/
scanner combination were used to obtain the corresponding CoVs. A
Fig. 8. Sample ICV segmentations from data split #1 models. The top rows are 3 d
bottom rows are 3 different CCNA volumes. Red overlays show the ground truth (G
overlays show deep learning method outputs.
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small CoV indicates a more consistent measurement over repeated
measures where a CoV of <5% is commonly deemed acceptable
(Campbell et al., 2010). Since the number of scans corresponding to each
vendor was unbalanced, which can bias these descriptive measurements
and limit comparison, the number of samples used to compute CoV from
GE, Siemens, and Philips groups was determined from the smallest class
size.

3. Results

In this section, the experimental setup and evaluation experiment
outcomes will be presented. For 2D CNN methods, image slices were
resized to 256 � 256 using bilinear interpolation and the corresponding
ICV segmentations were transformed back to native dimensions prior to
performance assessment. Data augmentation in the form of moderate
shearing, scaling, rotation, and translation was applied to training images
for artificial data expansion and to reduce overfitting (Chollet, 2018).

Unless specified otherwise, all CNN-based methods shared common
design choices. All convolutional operations used 3 � 3 filters with
rectified linear unit (ReLU) activation. The final output layers were
configured with a single 1� 1 filter and sigmoid activation to account for
the binary nature of the segmentation task. An Adam optimizer with a
learning rate of 0.0001 was used over 50 epochs with a batch size of 16.
This number of epochs allowed the models to reach a steady-state vali-
dation loss. Final model weights were selected from the epoch that
yielded the optimal validation loss. The Dice loss function was used for
ifferent ADNI volumes, the middle rows are 3 different CAIN volumes, and the
T) annotations, green overlays show traditional method outputs, and turquoise
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most architectures. If GT ¼ fgt1;⋯; gtNg are the ground truth masks over
N slices and BM ¼ fbm1;⋯; bmNg are the corresponding predicted brain
masks, the Dice loss function can be mathematically defined as:

Diceðbmn; gtnÞ¼
PN

n¼1jbmn ∘ gtnj þ s
PN

n¼1jbmnj þ jgtnj þ s

where s is a smoothing factor used to avoid division by 0. Only Kleesiek
(see section 2.3.3) and CompNet (see section 2.3.9) had differing loss
functions and training setups. Due to its computational expense, Comp-
Net was trained in (Dey and Hong, 2018) using an Adam optimizer with a
learning rate of 0.001 over only 10 epochs with a batch size of 4. In this
work, we use the same settings, but training ran for 15 epochs.

Models were trained on a computer with a NVIDIA Tesla P100 GPU
with 16 GB of RAM. All presented results pertain to the test sets in the
data splits (see section 2.6.1).
3.1. Accuracy

Fig. 8 shows sample ICV segmentations generated by data split #1
models. The Thresholding method operated well in regions with large,
constant intensities (i.e., middle slices) but missed brain tissue in upper
and lower slices. The RFC method improved on the Thresholding method
with some false positives and negatives being noted. In terms of the deep
learning methods, FCN8, U-Net, SC U-Net, Res U-Net, Dense U-Net,
CompNet, and MultiResUNet generated high quality segmentations over
all datasets and spatial locations. For these methods, the ICV region was
clearly delineated with smooth boundaries. There were some false pos-
itives noted in the Kleesiek method.

We first compared the ICV segmentation accuracy of the methods
using the average evaluation metrics shown in Table 3. With respect to
data split #1, MultiResUNet obtained the best overall DSC (98.12%), HD
(1.44 mm), and EF (1.60%) while SC U-Net obtained the best AVD
(1.20%). U-Net and SC U-Net were top 3 performers for at least 3 metrics
each. Similar results were observed for data split #2 whereMultiResUNet
obtained the best overall DSC and HD. Evaluation metric distributions for
data split #1 and #2 can be seen in Fig. 9 and Fig. 10, respectively. Each
of the 2D CNNs had better medians, lower variance, and fewer outliers
compared to the traditional methods. The worst performing algorithm in
terms of DSC for data split #1 and #2 was Kleesiek, followed by
Thresholding and RFC. These algorithms also exhibited high variability,
indicating less predictable performance.

We also generated B-A plots between ground truth ICV and predicted
ICV (in mL) as seen in Fig. 11. Considering data split #1, all 2D CNN
methods showed measurement biases under 20 mL with U-Net, Multi-
ResUNet, SC U-Net having the narrowest limits of agreement. The
Thresholding, RFC, and Kleesiek methods had considerably larger biases
(exceeding 80 mL) and broader limits of agreement, which suggests that
they are less suitable proxies for manual segmentation. Similar trends
were observed for data split #2 where U-Net, MultiResUNet, and SC U-
Table 3
Average evaluation metrics across all ICV segmentation methods for both data splits. M
value is better and ↓ means a lower value is better. Bold values show the best result.

DSC (%) ↑ HD (mm) ↓

data split #1 data split #2 data split #1 data split

Thresh 91.72 � 3.18 91.03 � 3.79 9.35 � 3.54 8.79 � 3.
RFC 94.79 � 2.09 93.77 � 3.09 4.38 � 2.14 5.12 � 2.
Kleesiek 89.72 � 3.35 88.81 � 4.39 7.73 � 3.87 8.33 � 3.
FCN8 97.90 � 0.70 97.50 � 0.89 1.68 � 1.17 1.62 � 0.
U-Net 98.08 � 0.47 97.70 � 0.86 1.54 � 0.82 1.57 � 1.
SC U-Net 98.07 � 0.48 97.66 � 1.04 1.59 � 0.90 1.55 � 0.
Res U-Net 98.05 � 0.43 97.71 � 0.95 1.51 � 0.79 1.50 � 0.
Dense U-Net 98.05 � 0.42 97.52 � 0.91 1.57 � 0.92 1.61 � 0.
CompNet 97.72 � 0.65 97.58 � 1.18 1.82 � 1.27 1.62 � 0.
MultiResUNet 98.12 ± 0.41 97.76 ± 0.95 1.44 ± 0.68 1.44 ± 0.
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Net were among top performers in respect to both bias and limits of
agreement.

3.2. Generalization

To analyze method performance across scanner vendors, data split #1
was utilized. Data split #1 had testing data from the same distribution as
the training data and enabled analysis of scanner effect on ICV segmen-
tation while minimizing dataset effects. The data split #1 test set con-
tained 17 GE scans, 19 Philips scans, and 17 S scans. Fig. 12 shows the
DSC distributions as a function of scanner vendor. As can be seen, across
the deep learning methods (except for Kleesiek), there was high accu-
racy, low variance, and good consistency in DSC across scanner vendors.
From the traditional methods, Thresholding exhibited wider variability
and lower DSCs compared to the RFC. Except for RFC, all methods had
significant ANOVA models (p < 0.001) indicating differences in algo-
rithm performance between vendors (see Table A in Appendix). Post-hoc
testing revealed that the source of most differences (p < 0.05) was per-
formance between GE versus Philips scans and Siemens versus Philips
scans. Performance between GE and Siemens scans typically did not
differ (p > 0.05). Although there was a statistical difference between
scanners, it is noted by Fig. 12 that deep learning methods still had high
accuracy across vendors.

To analyze generalization across datasets, data split #2 was utilized.
Recall that this split had training data from a single dataset (CAIN) and
test volumes from ADNI, CCNA, and CAIN to compare how methods
would generalize to datasets within and outside their training distribu-
tion. This analysis also tested robustness across diseases since the source
and target datasets were different (vascular and dementia disease).
Fig. 13 shows the DSC for every method as a function of dataset. As can
be seen, 2D CNNs performed slightly better on CAIN volumes but
maintained high performance over all datasets. The traditional and
Kleesiek methods showed much more variability across datasets and
performed noticeably worse on ADNI brains. This indicates that these
methods are less capable of generalizing to the differing AD related pa-
thology. The null hypothesis was rejected (p< 0.001) for ANOVAmodels
of all methods indicating that test dataset influenced algorithm perfor-
mance (see Table B in the Appendix). Post-hoc analysis revealed that
some methods (FCN8, SC U-Net, Dense U-Net, CompNet) had no per-
formance difference (p > 0.05) between ADNI and CCNA volumes. All
methods reported significant performance differences (p < 0.05) when
CAIN was one of the groups. This indicates that the methods learned
features related to vascular diseased brains that differ from those in the
dementia datasets. Despite this, the 2D CNNs never report DSCs below
95% on the unseen data distributions indicating strong generalization
potential. Only Thresholding did not report differences between ADNI
and CAINwhich can likely be attributed to the unsupervised nature of the
algorithm.
etrics are shown as mean� standard deviation. For each metric, ↑means a higher

EF (%) ↓ AVD (%) ↓

#2 data split #1 data split #2 data split #1 data split #2

76 3.92 � 3.83 3.24 � 2.63 11.27 � 6.36 11.40 � 7.51
76 8.38 � 5.17 9.04 � 7.53 6.35 � 5.53 7.12 � 6.93
77 14.98 � 10.94 10.74 � 6.53 11.04 � 12.38 9.16 � 6.99
81 2.83 � 1.91 1.80 � 0.89 1.86 � 2.18 1.92 � 1.60
06 1.85 � 1.02 1.52 � 0.86 1.21 � 1.08 1.87 � 1.43
56 1.83 � 1.09 1.88 � 1.04 1.20 ± 1.15 1.62 � 1.30
55 1.96 � 1.11 1.72 � 0.95 1.36 � 1.11 1.65 � 1.29
72 2.07 � 1.10 1.36 ± 0.91 1.29 � 1.08 2.42 � 1.83
78 3.05 � 1.61 2.27 � 1.18 1.90 � 1.66 1.56 ± 1.20
60 1.60 ± 0.90 1.72 � 0.95 1.28 � 1.15 1.64 � 1.24



Fig. 9. DSC, HD, and EF distributions across all ICV segmentation methods for data split #1.
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3.3. Robustness to pathology and spatial location

In this section, algorithm robustness to pathology and spatial location
was analyzed. Comparison was limited to the top three performing deep
learning methods according to accuracy (U-Net, SC U-Net, Multi-
ResUNet) and the traditional methods (Thresholding, RFC). This enabled
us to highlight robustness differences between traditional and deep
learning methods and further assess which CNN is best suited for
neurodegenerative population ICV segmentation. To ensure vascular and
10
dementia causing pathologies were both accounted for, we used models
trained from data split #1.

DSC distributions as a function of WML load, CSF load, and MoCA
categorization are shown in Fig. 14. Of the 53 test volumes in data split
#1, 24 were categorized as normal, 22 were categorized as impaired, and
7 did not have MoCA scores and were omitted. The 2D CNNmethods had
higher DSCs with lower variance over all WML and CSF loads compared
to the traditional methods. Regarding performance on MoCA categori-
zations, the traditional algorithms performed worse on the impaired



Fig. 10. DSC, HD, and EF distributions across all ICV segmentation methods for data split #2.
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volumes, which likely contain more prevalent pathology, while the CNNs
maintained performance with a small increase in variance on impaired
volumes. The ANOVA models for 2D CNN methods reported no perfor-
mance differences across all WML and CSF loads (see Tables C and D in
the Appendix). Differences (p < 0.001) were only found for the tradi-
tional methods between WML loads. Post-hoc testing revealed differ-
ences (p < 0.05) between low versus medium WML loads for
Thresholding and medium versus high WML loads for RFC. To further
understand these differences, sample segmentations on 3 challenging
11
cases (1 per database) are shown in Fig. 15. These cases were selected
because of the large lesions and prominent atrophy. On the CAIN CVD
case, traditional methods failed in proximity to the large lesion. On the
CCNA MCI case, traditional methods generated many false negatives in
proximity to the lesions and enlarged ventricles. On the ADNI AD patient,
with atrophy characterized by a prominent central fissure, Thresholding
omitted much of the CSF while RFC had difficulty discerning the ICV
border. In contrast, segmentations from the 2D CNNs were smooth and
accurately delineated the ICV region irrespective of atrophy or lesions.



Fig. 11. B-A plots between manual ground truth and algorithm predicted ICV in millilitres for data split #1 and data split #2. Mean of methods is given on the x-axis
and difference between methods is given on the y-axis.
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Fig. 12. DSC distributions across all ICV segmentation methods for data split #1 as a function of scanner vendor.

Fig. 13. DSC distributions across all ICV segmentation methods for data split #2 as a function of dataset.
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Deviations were mainly exhibited by 2D CNNs when prominent pathol-
ogy existed at the ICV border. For example, there were some false neg-
atives along the periphery of the large CVD lesion and around the areas of
extreme atrophy in the MCI patient.

The average regional DSCs for the traditional and top 2D CNN
methods are shown in Fig. 16. Central regions of the brain are typically
easier sites for automated segmentation as there is clear morphological
separation between the brain and surrounding skull. All algorithms
achieved comparable performance (average DSCs of at least 90% with
low standard deviation) on middle regions. Superior and inferior slices
present a challenge as there is increased tissue diversity and potential
feature overlap with the brain. Performance on top and bottom slices
varied across the methods. RFC for example, had similar performance on
bottom and top slices, but there was more than a 10% drop in DSC
compared to the middle slices. CNN methods by contrast had much more
performance similarity across spatial locations. For the bottom 20% of
slices, U-Net had a best DSC of 93.99% followed by MultiResUNet
(93.93%) and SC U-Net (93.75%). For the top 20% of slices, U-Net also
had a best DSC of 93.70% followed by SC U-Net (92.72%) and Multi-
ResUNet (92.51%). Over all methods, ANOVA models rejected the null
hypothesis (p < 0.001) indicating a difference in performance across
13
space and anatomy (see Table E in the Appendix). Post-hoc analysis
revealed there were performance differences (p < 0.05) between the
middle versus top or bottom regions, and no performance differences (p
> 0.05) between the top versus bottom regions as well as middle region 2
versus middle region 3 for all methods. To visualize segmentation error
across spatial locations, error maps were generated with a few examples
being shown in Fig. 17. For central slices, error maps were comparable
aside from the CNNs providing better delineation of the central fissure
and omitting ocular orbits. Thresholding exhibited a pattern of under-
segmentation while RFC exhibited a pattern of oversegmentation
(particularly in inferior slices where the ICV border is difficult to
discern). Errors for the 2D CNNs were mainly concentrated in posterior
regions, around the anterior sinuses, and at the ICV border.

3.4. Volumetric reliability and reproducibility

SIMON volumes came from the same, healthy subject and corre-
sponding ICV measurements should not be significantly different across
scans. In total, the same subject was scanned 62 times at 12 different
centres (41 S, 14 Philips, and 7 GE). Data split #1 models of the tradi-
tional (Thresholding, RFC) and top performing CNN methods (U-Net, SC



Fig. 14. DSC distributions across select ICV segmentation methods for data split #1 as a function of WML load, CSF load, and MoCA categorization.
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U-Net, MultiResUNet) were used to generate ICV masks on the SIMON
data. Table 4 shows the average SIMON ICV measurements organized by
method and scanner vendor. Each method/scanner combination
outputted ICV measurements hovering around 1400 mL which is in line
with previous works measuring average ICV in healthy populations
(Aribisala et al., 2013). Fig. 18 shows the SIMON ICV measurement
distributions for each method/scanner combination. As can be seen,
traditional methods not only had high variability, but generated notably
different ICV measurements across scanner vendors. ICV measurements
from the CNN methods had low variability and were more aligned across
14
scanners. Siemens scans likely exhibited greater variability due to the
larger sample size reflecting the true spread in the ICV measurements.

7 Philips scans and 7 S scans were randomly sampled prior to
computing the CoV to balance the number of samples between scanner
groups. The CoV values computed for each method/scanner combination
on the balanced dataset are shown in Table 4. All method/scanner
combinations, except for Thresholding/GE and Thresholding/Siemens,
returned CoV values lower than 3% indicating a high degree of seg-
mentation reliability overall. MultiResUNet yielded the lowest CoV for
Siemens and Philips scans while SC U-Net yielded the lowest CoV for GE



Fig. 15. Sample segmentations for challenging cases across select ICV segmentation methods. Red overlays show ground truth delineations, green overlays show
traditional algorithm predictions, and turquoise overlays show 2D CNN predictions. The top row is a CVD case from the CAIN database, the middle row is an MCI case
from the CCNA database, and the bottom row is an AD case from the ADNI database.

Fig. 16. Average regional DSC across select ICV segmentation methods. Each region represents progressive 20% increments of volume slices. Standard deviation is
shown as black error bars.
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scans. Over all scanners, the mean CoV of the CNNs was less than 1%
(MultiResUNet was best at 0.62%) followed by RFC at 2.1% and
Thresholding at 7.6%. To compare the cross-vendor CoVs per method,
the absolute difference in CoV was taken for each scanner pair combi-
nation. For highly reproducible algorithms, the repeated measurement
would yield very low differences in relative variability between scanners.
As can be seen in Fig. 19, MultiResUNet has the lowest CoV differences
(nearly 0%) for all scanner pairs.

4. Discussion

Although many structural biomarkers are extracted from T1 MRI,
most WML segmentation algorithms require FLAIR MRI as the primary
data input (García-Lorenzo et al., 2013), (Khademi et al., 2011), (Heinen
et al., 2019). In (Narayana et al., 2020) it was demonstrated that the
FLAIR modality is the most crucial for lesion segmentation. Despite this,
it is common to analyze FLAIR via multi-modal approaches that
co-register FLAIR to T1 or T2 MRI (Soltanian-Zadeh and Peck, 2001),
(Khademi et al., 2020). This multiparametric approach prolongs scan
times, increases acquisition costs, and can introduce registration errors
across sequences (Narayana et al., 2020), (Soltanian-Zadeh and Peck,
2001), (Khademi et al., 2020). Since FLAIR is routinely clinically ac-
quired and highlights vascular disease with high specificity, there is
15
benefit from developing methods that operate on this single sequence.
ICV segmentation is a crucial preprocessing step to FLAIR analysis,

but most ICV segmentation algorithms have been designed for T1 MRI.
The ROBEX algorithm (Iglesias et al., 2011) for example, uses a ML
classifier trained on T1 data and cannot generalize to FLAIR due to dif-
ferences in tissue class intensities. The brain extraction tool (BET) (Smith,
2002), another popular option, uses a deformable model that is initial-
ized at the brain centre and expands until reaching a threshold repre-
sented by the skull in T1 inputs. BET also cannot generalize to FLAIR as
the hyperintense appearance of WML cause the threshold to be prema-
turely crossed and the resultant brain masks to be under segmented
(Khademi et al., 2020), (DiGregorio, 2018). Additionally, many methods
are developed from normative data and may be sub-optimal for neuro-
degenerative populations with lesions and atrophy. To address this gap,
this work proves the effectiveness of FLAIR specific ICV segmentation
algorithms for multicentre, multi-disease data and presents a novel
evaluation framework that can be used to establish proof of effectiveness
for automated biomarker tools.

Our previous work (RFC) (Khademi et al., 2020) established that
FLAIR is an effective sequence for ICV segmentation as DSCs exceeding
90% were obtained on multicentre datasets. However, due to the hand-
crafted nature of the features, pathology close to the brain periphery
caused challenges. To overcome these challenges, it was postulated that



Fig. 17. Error maps for select ICV segmentation methods. Averaged error maps
of segmentations are shown for slices 5, 15, 25, 35, and 45 in the 55 slice
registration atlas space.
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deep learning techniques that can adapt to wide variability in anatomy
and pathology would further improve performance. As such, we utilized
an established deep learning framework for brain extraction (Kleesiek
et al., 2016) (Kleesiek) and adapted several CNN architectures for use on
FLAIR MRI. Most of the adapted architectures were 2D. While 3D
methods are gaining traction (Hwang et al., 2019), the additional
Table 4
Mean (μ) � standard deviation (σ) of SIMON ICV measurements for each method a
scanner groups are also shown where bold values indicate the best CoV.

Thresholding RFC U-Net

μ � σ (mL) CoV (%) μ � σ (mL) CoV (%) μ � σ (m

Siemens 1245.37�
106.27

8.90 1431.69�
32.49

2.11 1416.71
24.05

Philips 1309.42�
52.37

2.70 1473.86�
26.38

1.56 1421.61
8.08

GE 1306.43�
159.18

11.28 1489.71�
44.31

2.75 1417.81
4.16

Fig. 18. ICV measurements computed on SIMON
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computational expense and memory burden may not be worth it when
used on FLAIR data. FLAIR sequences are often acquired with a high slice
thickness and are of low resolution in the z-direction which may hinder
the advantage of 3D networks (Guerrero et al., 2018).

Based on our experiments, architectures utilizing the “U-shape”
(encoder and decoder arm) were the most effective for FLAIR specific ICV
segmentation. During our assessment of accuracy, U-Net, SC U-Net, and
MultiResUNet were the top performing methods with average DSCs
greater than 98%, measurement biases below 8 mL, and narrow limits of
agreement (see Fig. 11). The accuracy (average DSC) of traditional ap-
proaches was approximately 3–6% lower. In cases with more obvious
pathology (atrophy, large lesions) and in the extreme superior and
inferior slices the traditional approaches experienced a decrease in per-
formance. This is likely due to the handcrafted feature design which has
difficulties adapting to highly variable structures. In contrast, the deep
learningmethods had smooth ICV contours with no obvious false positive
or negatives. The nonlinear nature of deep learning approaches can more
effectively model the complex relationships between texture, shape, and
structure found in the brain. Kleesiek was the only deep learning method
that did not outperform traditional methods. In (Kleesiek et al., 2016),
Kleesiek theorized that the proposed network may encounter difficulties
on testing data with varying resolution (mm/voxel) from the training set.
Given the resolution diversity of our data, this is a possible cause of
reduced performance. Further, Kleesiek is a 3D architecture and the low
z-plane resolution of FLAIR may have affected its performance. Overall,
the accuracy exhibited by our best 2D CNNs was comparable to existing
CNN-based ICV systems that use T1 inputs (Ntiri et al., 2020), (Hwang
et al., 2019). The effectiveness of the 2D CNN architectures proves the
viability of relatively computationally inexpensive systems with low
prediction times.

Further experiments and statistical analyses were used to analyze
cross scanner vendors. Coefficients of variation (CoV) computed from balanced

SC U-Net MultiResUNet

L) CoV (%) μ � σ (mL) CoV (%) μ � σ (mL) CoV (%)

� 1.41 1414.41�
21.95

1.33 1421.37�
16.88

0.87

� 0.69 1418.83�
21.95

0.73 1417.42�
7.98

0.59

� 0.27 1421.21�
2.88

0.18 1426.14�
6.22

0.40

as a function of method and scanner vendor.



Fig. 19. Coefficients of variation (CoV) between scanners and methods.
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performance metrics across different dimensions related to generaliz-
ability (scanners, datasets), robustness (pathology levels, spatial loca-
tion) and reliability and reproducibility (SIMON). In general, if the error
rate, or performance of the algorithms is statistically similar across each
variable, there is a basis for believing the algorithm is robust across these
dimensions. This is important to understand in terms of establishing
proof of effectiveness for computer generated imaging biomarkers, which
is a prerequisite to clinical implementation. To date, many proof of
concept algorithms have been developed for neuroimaging applications
(Akkus et al., 2017), (Ali et al., 2019), (Bernal et al., 2019) but there is a
lack of performance testing across important parameters in multicentre
datasets to determine clinical feasibility (Rehman et al., 2020a). Such an
evaluation framework can be used to determine the optimal method for
the task, to inform design decisions for method improvement, and to
predict performance on new, prospective datasets.

During our assessments of generalization, all methods had significant
differences in performance across scanners, except for the RFC method.
This is likely due to the intensity standardization enabling fair compar-
ison of features across multicentre datasets. Post-hoc analysis showed
that Philips was a common source of difference across the methods,
whereas similar DSC means were obtained in volumes from GE and
Siemens scanners. This indicates that scanner vendor, particularly Phi-
lips, plays a role in algorithm performance. As the number of volumes
Fig. 20. Average intensity standardized histograms of all CAIN, ADNI, and
CCNA volumes from each scanner vendor.
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from each group is relatively balanced in the training set (34% Philips,
25% GE, 41% Siemens), slightly inferior performance on Philips scans
(see Fig. 12) is not the result of inadequate or imbalanced exposure
during training. A possible reason for this is that the reconstruction al-
gorithms or noise profiles of the scanners are most similar between GE
and Siemens which allows networks to perform similarly across them.
This rationale was supported by the average standardized histograms of
all volumes per scanner vendor shown in Fig. 20. Intensity standardiza-
tion was mostly able to align the intensity intervals of major tissue classes
across vendors. However, Siemens and GE histograms had greater sep-
aration between the GM/WM peak and nulled tissues (i.e., CSF)
compared to Philips. This may have made Philips scans more challenging
from a classification perspective due to feature overlap between tissues.
In terms of databases, all methods reported significant differences in
performance. Recall that generalization to databases was tested using
data split #2 which contained training data from a single dataset. Despite
being tested on mostly unseen data in this scenario, our models did
experience a drastic reduction in performance (i.e., MultiResUNet had a
0.36% decrease in mean DSC going from data split #1 to #2). Post-hoc
analysis showed that across methods there was the most similarity in
performance between ADNI and CCNA datasets which are the two de-
mentia cohorts. This could indicate that the source of pathology in the
training dataset plays a vital role in the performance of algorithms and
should be considered when designing future algorithms for clinical use.

In terms of robustness to pathology, two disease burdens were
investigated (WML and CSF load) that are related to vascular and de-
mentia causing conditions. Considering WML loads, the deep learning
methods were reliable across all levels (low, medium, high). This is very
important from a clinical perspective, since WML are one of the most
prominently studied types of pathology in FLAIR MRI. Based on these
tests, there can be some confidence that performance will not diminish in
the presence of ischemic and demyelinating pathology. In contrast, the
performance of traditional methods fluctuated across lesion loads. Large
lesions and lesions close to the ICV boundary created challenges for the
traditional approaches, which is likely a major source of this variability.
In terms of CSF loads, which are a proxy measurement of atrophy and
ventricular enlargement, all methods exhibited statistically similar per-
formance across levels, indicating that CSF presence does not strongly
impact performance.

Mean DSCs across different spatial locations were compared to see
algorithm robustness across anatomical regions. Central slices contain
most of the cerebrum and portions of the orbital structures which are
traditionally difficult to segment. In very superior slices, there are skull
and head structures that create challenges since there is limited brain
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tissue to segment. In inferior slices, there is the cerebellum and brain
stem, as well as other skeletal structures that can create challenges in ICV
segmentation. Statistical analysis showed that all methods performed
differently across spatial locations, with similar performance found in the
top and bottom slices and in two of the middle regions. Similar perfor-
mance in the top and bottom slices indicates that the relative error rate in
these regions is similar. For the deep learning methods, this could be due
to a data imbalance issue, as imaging volumes contain less slices from
these areas (as compared to the middle regions). In future works,
increasing the number of slices from these regions (extreme superior and
inferior) that the networks see should improve consistency across the
spatial locations. In the traditional approaches, lower and upper slices
contain structures that are different from the middle cerebral tissues in
terms of intensity, contrast, and edge-content, which can be difficult to
differentiate with handcrafted features, and simple classifiers. In the
middle regions, similar performance is expected since the structural tis-
sue content is largely similar.

We also evaluated the volumetric measurement reliability and
reproducibility of the algorithms on the human phantom dataset
(SIMON). The 2D CNNs had low measurement variation, obtaining
average CoVs of less than 1% across vendors. Regarding the traditional
methods, RFC had a comparable average CoV of approximately 2% while
Thresholding was beyond the accepted range of 5%. The CNN-based
methods reliably produced similar ICV measurements across scanners
with comparable variability as noted by the low CoV differences between
vendors. The ICV measurement reliability exhibited by these methods is
an important performance characteristic of a tool designed for longitu-
dinal biomarker extraction. The human phantom was scanned between
the ages of 29 and 46, making the brain tissue volumes subject to natural,
age-related changes (Aribisala et al., 2013). This, compounded with
hardware induced variability, creates expectation that there will some
variation in the ICV measurements. However, it appears that the 2D
CNNs were superior at minimizing this variability.

When comparing the deep learning-based methods, several observa-
tions can be made. Firstly, although there are some differences across
spatial location, scanners, and databases, methods such as domain
adaptation and increasing the training sample size can possibly mitigate
these issues. Secondly, changes to the original “U-shaped” (U-Net) ar-
chitecture only made minor performance differences for the coarse seg-
mentation task of ICV segmentation. The encoder-decoder framework of
U-Net seemed to maximize most of the performance potential and design
features such additional skip connections, residual connections, and
dense connections lead to minor or lateral performance differences.
Other segmentation tasks in FLAIR, such as WML segmentation, deal with
severe imbalance between positive and negative pixels (i.e., the % of
pixels belonging to the WML class is small when considering an entire
volume). Coupled with low training data availability, this can make
learning difficult and the effect of architecture design differences more
apparent. In ICV segmentation, the size of the brain provides better
positive to negative pixel balance. This may be better for optimizing the
potential of certain CNN architectures and in turn, makes measuring the
effect of architecture differences more difficult. Despite comparable
performance between our top proposed models, an objective of this work
is to provide a system recommendation. As such, we recommend our
implementation of the MultiResUNet architecture as an effective system
for multicentre FLAIR ICV segmentation in neurodegenerative pop-
ulations. MultiResUNet differentiated itself from other methods by
obtaining the highest number of optimal validation metrics during our
assessment of accuracy and having the lowest variability in SIMON ICV
measurements between scanner vendors. Medical images contain both
local and global structures and an architecture that captures multiple
resolutions may be better at modeling fine and gross features in the brain.
In our previous work (RFC) (Khademi et al., 2020), we found that the
boundary between the CSF and the cranium was the most difficult to
segment. By fine-tuning the pixel sampling strategy to better represent
these regions, a substantial gain in performance was realized. Thus, the
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multi-resolution feature extraction of MultiResUNet may be effectively
modeling the boundaries and brain tissue regions simultaneously for
enhanced discrimination.

Regarding study limitations, it is possible that architectures with
more parameters (i.e., Dense U-Net) have even greater potential in a
scenario where more training data is available. Similarly, due to its
extreme computational expense, the CompNet architecture was only
trained for 15 epochs which may explain the slightly lower performance
compared to the other architectures. We also did not utilize a third data
split to test the impact of not stratifying for scanner vendor. We expect
that our models would also generalize under this scenario as data ac-
quired from a single scanner vendor is analogous to data curated for a
single dataset. Since our models did not exhibit a drastic performance
drop-off when trained solely on CAIN, there is precedent for similar
outcomes when trained solely on single vendor data. However, we would
not expect strong generalization if data were acquired with the same
scanner and acquisition settings as this would likely lead to extreme
overfitting. Additionally, while our models demonstrated robustness to
unseen neurodegenerative pathology, we did not test our models on
other pathologies like gliomas. Though an aim of this study is to
recommend an ICV segmentation solution for neurodegenerative pop-
ulations, it may be insightful for other researchers to understand which
architectural configurations can generalize to other categories of disease.
We postulate that similar results will be found for other pathologies using
these architectures. While we did not compare our models to those
trained with multi-modal inputs, based on the high accuracy results of
deep learning methods in FLAIR MRI, we were able to demonstrate that
FLAIR is solely viable for high quality ICV segmentation. Comparing to
T1 or multi-modal measurements could be a source of future investiga-
tion although in (Narayana et al., 2020) the authors found that FLAIR on
its own is a viable sequence for tissue segmentation. In addition to
technical development, future works will involve applying the proposed
FLAIR ICV segmentation system to large, clinical datasets to enable
subsequent biomarker extraction and normalization. Using the ICV to
normalize biomarkers such as total brain volume, CSF volume, WML
volume, and corresponding rates of change (i.e., atrophy, WML expan-
sion) will enable the development of predictive models for neurode-
generative disease classification and for disease monitoring.

5. Conclusions

In this work, we adapted state-of-the-art techniques for segmentation
of ICV in multicentre FLAIR MRI. ICV is an important structural
biomarker for neurodegenerative disease diagnosis and management.
Inaccurate ICV measurements induced by data variation or neurode-
generative pathology reduces the power of clinical studies due to
downstream error propagation and insufficient correction for inter-
subject head size variation. To identify a strong ICV measurement sys-
tem, we successfully designed an evaluation framework to compare the
accuracy, generalization, robustness, and reliability of candidate
methods with clinical application in mind. Using our framework, we
were able to prove the viability of solely FLAIR ICV analysis, identify
MultiResUNet as the best ICV segmentation method for FLAIR, and
demonstrate algorithm robustness to multicentre, neurodegenerative
disease data. This framework can be used to take proof of concept tools
and demonstrate proof of effectiveness, which is a prerequisite to clinical
translation. The evaluation framework can easily be expanded to other
applications and methods and presents a mechanism for the assessment
of computer generated biomarkers and tools.
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Appendix
Table A
ANOVA analysis of effect of scanner vendor on algorithm performance for data split #1 (F-value and Pr > F) with the null hypothesis that the means of a metric is the
same across vendors. Post-hoc analysis compared performance metrics across groups. For insignificant ANOVA tests, post-hoc testing is not performed. Bold p-values
indicate no differences exist between scanners (assuming α ¼ 0.05).

Method Metric F-Value Pr > F GE vs. Philips GE vs. Siemens Philips vs. Siemens
Thresh
 DSC
 13.35
 <0.0001
 0.0269
 0.0493
 <0.0001

HD
 13.85
 <0.0001
 0.0002
 0.9635
 <0.0001

EF
 28.98
 <0.0001
 0.0006
 0.0027
 <0.0001
RFC
 DSC
 3.44
 0.0399

HD
 0.76
 0.4708

EF
 9.21
 0.0004
 0.9010
 0.0033
 0.0007
Kleesiek
 DSC
 13.46
 <0.0001
 0.0004
 0.8394
 <0.0001

HD
 9.56
 0.0003
 0.0044
 0.7682
 0.0005

EF
 37.11
 <0.0001
 <0.0001
 0.0591
 <0.0001
FCN8
 DSC
 24.06
 <0.0001
 <0.0001
 0.9995
 <0.0001

HD
 29.15
 <0.0001
 <0.0001
 0.9871
 <0.0001

EF
 25.30
 <0.0001
 <0.0001
 0.5337
 <0.0001
U-Net
 DSC
 18.32
 <0.0001
 <0.0001
 0.9962
 <0.0001

HD
 25.37
 <0.0001
 <0.0001
 0.7602
 <0.0001

EF
 7.00
 0.0021
 0.7661
 0.0197
 0.0023
SC U-Net
 DSC
 16.36
 <0.0001
 <0.0001
 0.9999
 <0.0001

HD
 22.93
 <0.0001
 <0.0001
 0.9200
 <0.0001

EF
 8.13
 0.0009
 0.5729
 0.0181
 0.0008
Res U-Net
 DSC
 11.66
 <0.0001
 0.0003
 0.9968
 0.0004

HD
 21.58
 <0.0001
 <0.0001
 0.9243
 <0.0001

EF
 7.21
 0.0018
 0.8522
 0.0028
 0.0098
Dense U-Net
 DSC
 10.67
 0.0001
 0.0038
 0.6166
 0.0002

HD
 17.81
 <0.0001
 <0.0001
 0.9394
 <0.0001

EF
 9.91
 0.0002
 0.9960
 0.0009
 0.0009
CompNet
 DSC
 14.76
 <0.0001
 0.0003
 0.6847
 <0.0001

HD
 25.54
 <0.0001
 <0.0001
 0.9926
 <0.0001

EF
 17.41
 <0.0001
 0.005
 0.0409
 <0.0001
MultiResUNet
 DSC
 11.23
 <0.0001
 0.0003
 0.9646
 0.0008

HD
 13.00
 <0.0001
 <0.0001
 0.9048
 0.0004

EF
 7.10
 0.0019
 0.6845
 0.0022
 0.0173
Table B
ANOVA analysis of effect of dataset on algorithm performance for data split #2 (F-value and Pr> F) with the null hypothesis that the means of a metric is the same across
datasets. Post-hoc analysis compared performance metrics across groups. For insignificant ANOVA tests, post-hoc testing is not performed. Bold p-values indicate no
differences exist between databases (assuming α ¼ 0.05).

Method Metric F-Value Pr > F ADNI vs. CAIN ADNI vs. CCNA CAIN vs. CCNA
Thresh
 DSC
 20.43
 <0.0001
 0.5884
 <0.0001
 <0.0001

HD
 35.30
 <0.0001
 <0.0001
 <0.0001
 0.0043

EF
 8.25
 0.0008
 0.8739
 0.0011
 0.0050
RFC
 DSC
 64.00
 <0.0001
 <0.0001
 <0.0001
 0.0142

HD
 3.78
 0.0275
 0.3849
 0.3350
 0.0204

EF
 59.28
 <0.0001
 <0.0001
 <0.0001
 0.0413
Kleesiek
 DSC
 37.97
 <0.0001
 <0.0001
 <0.0001
 0.8656

HD
 1.11
 0.3359

EF
 1.08
 0.3442
FCN8
 DSC
 41.28
 <0.0001
 <0.0001
 0.0945
 <0.0001

HD
 16.21
 <0.0001
 0.4604
 <0.0001
 0.0002

EF
 8.13
 0.0007
 0.0932
 0.0004
 0.1425
U-Net
 DSC
 23.00
 <0.0001
 0.0020
 0.0050
 <0.0001

HD
 19.32
 <0.0001
 0.0498
 <0.0001
 0.0010

EF
 17.50
 <0.0001
 0.4079
 0.0001
 <0.0001
(continued on next column)
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Table B (continued )
Method
 Metric
 F-Value
 Pr > F
20
ADNI vs. CAIN
 ADNI vs. CCNA
 CAIN vs. CCNA
SC U-Net
 DSC
 25.78
 <0.0001
 <0.0001
 0.0568
 <0.0001

HD
 23.34
 <0.0001
 0.2317
 <0.0001
 <0.0001

EF
 20.11
 <0.0001
 0.0347
 0.0010
 <0.0001
Res U-Net
 DSC
 29.22
 <0.0001
 0.0004
 0.0015
 <0.0001

HD
 24.56
 <0.0001
 0.1305
 <0.0001
 <0.0001

EF
 16.52
 <0.0001
 0.0909
 0.0019
 <0.0001
Dense U-Net
 DSC
 19.72
 <0.0001
 <0.0001
 0.4523
 <0.0001

HD
 21.19
 <0.0001
 0.1378
 <0.0001
 0.0001

EF
 22.77
 <0.0001
 0.3864
 <0.0001
 <0.0001
CompNet
 DSC
 25.57
 <0.0001
 <0.0001
 0.0624
 <0.0001

HD
 9.25
 0.0003
 0.3832
 0.0002
 0.0145

EF
 8.05
 0.0007
 0.0661
 0.2027
 0.0004
MultiResUNet
 DSC
 25.17
 <0.0001
 0.0002
 0.0148
 <0.0001

HD
 13.53
 <0.0001
 0.0801
 <0.0001
 0.0104

EF
 14.01
 <0.0001
 0.0560
 0.0122
 <0.0001
Table C
ANOVA analysis of effect of lesion load on algorithm performance for data split #1 (F-value and Pr > F) with the null hypothesis that the means of a metric is the same
across lesion loads. Post-hoc analysis compared performance metrics across groups. For insignificant ANOVA tests, post-hoc testing is not performed. Bold p-values
indicate no differences exist between lesion loads (assuming α ¼ 0.05).

Method Metric F-Value Pr > F High WML vs. Low WML High WML vs. Medium WML Low WML vs. Medium WML
Thresh
 DSC
 14.47
 <0.0001
 <0.0001
 0.0005
 0.4495

RFC
 DSC
 6.92
 0.0022
 0.0035
 0.8128
 0.0133

Kleesiek
 DSC
 6.45
 0.0032
 0.0029
 0.4830
 0.0459

FCN8
 DSC
 2.57
 0.0870

U-Net
 DSC
 2.47
 0.0952

SC U-Net
 DSC
 2.46
 0.0955

Res U-Net
 DSC
 2.03
 0.1415

Dense U-Net
 DSC
 2.04
 0.1414

CompNet
 DSC
 2.19
 0.1227

MultiResUNet
 DSC
 3.31
 0.1101
Table D
ANOVA analysis of effect of CSF load on algorithm performance for data split #1 (F-value and Pr > F) with the null hypothesis that the means of a metric is the same
across CSF loads. Post-hoc analysis compared performance metrics across groups. For insignificant ANOVA tests, post-hoc testing is not performed. Bold p-values
indicate no differences exist between CSF loads (assuming α ¼ 0.05).

Method Metric F-Value Pr > F High CSF vs. Low CSF High CSF vs. Medium CSF Low CSF vs. Medium CSF
Thresh
 DSC
 1.53
 0.2256

RFC
 DSC
 0.88
 0.4203

Kleesiek
 DSC
 0.89
 0.4165

FCN8
 DSC
 1.42
 0.2511

U-Net
 DSC
 0.23
 0.7950

SC U-Net
 DSC
 0.42
 0.6613

Res U-Net
 DSC
 0.14
 0.8679

Dense U-Net
 DSC
 0.02
 0.9794

CompNet
 DSC
 0.75
 0.4784

MultiResUNet
 DSC
 0.01
 0.9939
Table E
ANOVA analysis of effect of spatial location on algorithm performance for data split #1 (F-value and Pr > F) with the null hypothesis that the means of a metric is the
same across spatial locations. Bottom¼ 1, Middle 1¼ 2, Middle 2 ¼ 3, Middle 3¼ 4, Top¼ 5. Post-hoc analysis compared performance metrics across spatial locations.
Bold p-values indicate no differences exist between spatial locations (assuming α ¼ 0.05).

Method F-Value Pr > F 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 2 vs. 3 2 vs. 4 2 vs. 5 3 vs. 4 3 vs. 5 4 vs. 5
Thresh
 65.78
 <.0001
 <.0001
 <.0001
 <.0001
 0.9989
 <.0001
 0.0072
 <.0001
 0.0596
 <.0001
 <.0001

RFC
 120.58
 <.0001
 <.0001
 <.0001
 <.0001
 0.9697
 <.0001
 <.0001
 <.0001
 0.0744
 <.0001
 <.0001

Kleesiek
 228.08
 <.0001
 <.0001
 <.0001
 <.0001
 0.0115
 <.0001
 <.0001
 <.0001
 0.0185
 <.0001
 <.0001

FCN8
 101.35
 <.0001
 <.0001
 <.0001
 <.0001
 0.7647
 <.0001
 <.0001
 <.0001
 0.2106
 <.0001
 <.0001

U-Net
 125.18
 <.0001
 <.0001
 <.0001
 <.0001
 0.9864
 <.0001
 <.0001
 <.0001
 0.2574
 <.0001
 <.0001

SC U-Net
 121.39
 <.0001
 <.0001
 <.0001
 <.0001
 0.9536
 <.0001
 <.0001
 <.0001
 0.2897
 <.0001
 <.0001

Res U-Net
 145.27
 <.0001
 <.0001
 <.0001
 <.0001
 0.9536
 <.0001
 <.0001
 <.0001
 0.1107
 <.0001
 <.0001

Dense U-Net
 130.54
 <.0001
 <.0001
 <.0001
 <.0001
 1.0000
 <.0001
 <.0001
 <.0001
 0.2196
 <.0001
 <.0001

CompNet
 107.63
 <.0001
 <.0001
 <.0001
 <.0001
 0.5463
 <.0001
 <.0001
 <.0001
 0.1400
 <.0001
 <.0001

MultiResUNet
 131.06
 <.0001
 <.0001
 <.0001
 <.0001
 0.9433
 <.0001
 <.0001
 <.0001
 0.1834
 <.0001
 <.0001
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